Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation

نویسندگان

  • Jeanette Wagener
  • R. K. Subbarao Malireddi
  • Megan D. Lenardon
  • Martin Köberle
  • Simon Vautier
  • Donna M. MacCallum
  • Tilo Biedermann
  • Martin Schaller
  • Mihai G. Netea
  • Thirumala-Devi Kanneganti
  • Gordon D. Brown
  • Alistair J. P. Brown
  • Neil A. R. Gow
چکیده

Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn's disease.

NOD2 signalling can both positively and negatively regulate Tolllike receptor (TLR) responses. Previous studies have shown that lack of NOD2 signalling (in NOD2 knockout mice) leads to increased peptidoglycan induction of interleukin (IL)-12 via TLR2. Studies in this issue of Gut show that lack of NOD2 signalling (in patients with NOD2 mutations) leads to decreased CpG induction of tumour necro...

متن کامل

INFLAMMATORY BOWEL DISEASE Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn’s disease

Background: Nucleotide binding oligomerisation domain 2 (NOD2; also known as CARD15) mutations are associated with Crohn’s disease but how mutations cause disease is poorly understood. Innate immune responses are reportedly enhanced by combined NOD2 ligand (muramyl dipeptide, MDP) and Toll-like receptor 4 ligand (TLR4, lipopolysaccharide) stimulation. Intestinal TLR signalling has a dual role— ...

متن کامل

Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2.

Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-kappaB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1beta secretion through the regulation of caspase-1. However, the mechanisms that mediate caspase-1 activation and IL-1beta sec...

متن کامل

Nod2-dependent Th2 polarization of antigen-specific immunity.

While a number of microbial-associated molecular patterns have been known for decades to act as adjuvants, the mechanisms and the signaling pathways underlying their action have remained elusive. Here, we examined the unfolding of the adaptive immune response induced by Nod2 in vivo upon activation by its specific ligand, muramyl dipeptide, a component of peptidoglycan. Our findings demonstrate...

متن کامل

NOD2 up-regulates TLR2-mediated IL-23p19 expression via NF-κB subunit c-Rel in Paneth cell-like cells

IL-23p19 plays important roles in intestinal antimicrobial immunity, while its over-expression can lead to intestinal inflammation. However, the bacterial compounds and the type of pattern recognition receptor involved in the inducible expression of IL-23p19 in Paneth cells remain unclear. Here we show that the mRNA expression of IL-23p19 was increased in Paneth cell (PC)-like cells stimulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014